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ABSTRACT

We study the expected redshift evolution of galaxy cluster abundance between 0 �< z �< 3 in di�erent
cosmologies, including the e�ects of the cosmic equation of state parameter w � p=�. Using the Press{
Schechter formalism, we model the expected cluster yields in a 12 deg2 Sunyaev-Zel'dovich E�ect (SZE)
survey and a deep 104 deg2 X-ray survey over a wide range of cosmological parameters. We quantify
di�erences among cosmologies using both the total number and redshift distribution of clusters.
Provided that the local cluster abundance is known to a few percent accuracy, we �nd only mild

degeneracies between w and either 
m or h. As a result, both surveys will provide improved constraints
on w. The 
m{w degeneracy from the SZE survey lies nearly orthogonal to those found in studies of
CMB anisotropy or high{redshift Supernovae (SNe). Using the SZE survey together with either CMB
or SNe studies will determine both w and 
m to � 3% (68% con�dence). The large number of clusters
in the X{ray survey substantially reduces the degeneracy between w and both 
m and h, enabling
measurements of w to � 8% and 
m to � 1% accuracy without relying on either the CMB or SNe data.
The measured temperatures within the X{ray sample should provide a handle on possible systematic
uncertainties, such as the redshift{evolution of internal cluster structure.

Subject headings: cosmology: theory { cosmology: observation

1. INTRODUCTION

It has long been realized that clusters of galaxies provide
a uniquely useful probe of the fundamental cosmological
parameters. The formation of the large{scale dark mat-
ter (DM) potential wells of clusters is likely independent
of complex gas dynamical processes, star formation, and
feedback, and involve only gravitational physics. As a re-
sult, the abundance of clusters Ntot and their distribution
in redshift dN=dz should be determined purely by the ge-
ometry of the universe and the power spectrum of initial
density uctuations. Exploiting this relation, the observed
abundance of nearby clusters has been found to constrain
the amplitude of the power spectrum on cluster scales to an
accuracy of � 25% (e.g. Viana & Liddle 1996). The value
of �8 in these studies depends on the assumed underlying
cosmology, especially on the density parameters 
m and

�. Subsequent works (Bahcall & Fan 1998, Blanchard
& Bartlett 1998, Viana & Liddle 1999) have shown that
the redshift{evolution of the observed cluster abundance
already places useful constrains on these two cosmological
parameters.
In the above studies, the equation of state for the �{

component has been implicitly assumed to be p = w�

with w = �1. The recent suggestion that w might be
di�erent from �1, or even redshift dependent (Caldwell,
Dave & Steinhardt 1998) has inspired several studies of
the so{called \quintessence" cosmologies. From a particle
physics point of view, such w > �1 can arise in a num-
ber of theories (see Turner & White 1997, Caldwell, Dave
& Steinhardt 1998 and references therein). It is therefore
of considerable interest to search for possible astrophysical

signatures of these equations of state, especially those that
distinguish w = �1 from w > �1. Wang et al. (2000) has
summarized current astrophysical constraints that suggest
�1 � w �

< � 0:2.
The galaxy cluster abundance provides a natural test

of \quintessence" models, because w directly a�ects
the growth of uctuations Dz and the volume element
dV=dzd
. Furthermore, because of the dependence of
the angular diameter distance dA on w, the experimen-
tal detection limits for individual clusters, e.g., from the
Sunyaev{Zel'dovich e�ect (SZE) decrement or the X{ray
luminosity, depend on w. Wang & Steinhardt (1998, here-
after WS98) studied the constraints on w from a combina-
tion of measurements of the cluster abundance and Cos-
mic Microwave Background (CMB) anisotropies. Their
work has shown that the slope of the comoving abun-
dance dN=dz between 0 < z < 1 depends sensitively on w,
an e�ect that can break the degeneracies between w and
combinations of other parameters (h;
; n) in the CMB
anisotropy alone.
Here we consider in greater detail the constraints on w

from cluster abundance evolution. Our main goals are: (1)
to quantify the accuracy to which w 6= �1 models can be
distinguished from standard � Cold Dark Matter (CDM)
cosmologies using cluster abundance evolution; (2) to as-
sess these accuracies in two speci�c proposed cluster sur-
veys: an SZE survey (Carlstrom et al. 1999) and a wide
area X{ray survey, and (3) to contrast constraints from
cluster abundance to those from CMB anisotropy mea-
surements and from luminosity distances to high{redshift
Supernovae (Schmidt et al. 1998, Perlmutter et al. 1999).
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2 QUINTESSENCE AND CLUSTER ABUNDANCE EVOLUTION

Our work di�ers from the analysis of WS98 in sev-
eral ways. We examine the surface density of clusters
dN=dzd
, rather than the comoving number density n(z).
This is important from the observational point of view, be-
cause the former, directly measurable quantity inevitably
includes the additional cosmology-dependence from the
volume element dV=dzd
. We incorporate the mass{limits
expected from both types of surveys. Because the SZE sur-
vey has a nearly z{independent sensitivity, we �nd that
high{redshift clusters at z > 1 yield useful constraints, in
addition to those studied by WS98 in the range 0 < z < 1.
Finally, we quantify the statistical signi�cance of di�er-
ences in the models by applying a combination of a KS
and a Poisson test to dN=dzd
, and obtain constraints
using a grid of models for a wide range of cosmological
parameters.
This paper is organized as follows. In x 2, we describe

the main features of the forthcoming SZE and X-ray sur-
veys relevant to this work; and in x 3 we briey summarize
our modeling methods and assumptions. In x 4, we quan-
tify the e�ect on w and other parameters on cluster abun-
dance and evolution, and in x 5, we obtain the constraints
on w by considering a grid of di�erent cosmological mod-
els. In x 6, we discuss our results and the implications of
this work, and in x 7, we summarize our conclusions.

2. FUTURE CLUSTER SURVEYS

The observational samples available for studies of clus-
ter abundance evolution will improve enormously over the
coming decade. The present samples of tens of intermedi-
ate redshift clusters (e.g., Gioia et al. 1990, Vikhlinin et al.
1998) will be replaced by samples of thousands of interme-
diate redshift and hundreds of high redshift (z > 1) clus-
ters. At a minimum, the analysis of the European Space
Agency X-ray Multi-mirror Mission (XMM) archive for
serendipitously detected clusters will yield hundreds, and
perhaps thousands of new clusters with emission weighted
mean temperature measurements (Romer et al. 2000).
Proposed X-ray and SZE surveys could likely surpass the
XMM sample in areal coverage, number of detected clus-
ters or redshift depth. The imminent improvement of dis-
tant cluster data motivates us to estimate the cosmological
power of these future surveys. Note that in practice, the
only survey details we utilize in our analyses are the virial
mass of the least massive, detectable cluster (as a function
of redshift and cosmological parameters), and the solid an-
gle of the survey. We include here a brief description of
the surveys for completeness.

2.1. A Sunyaev{Zel'dovich E�ect Survey

The SZE survey we consider is that proposed by Carl-
strom and collaborators (Carlstrom et al. 1999). This
interferometric survey is particularly promising, because
it will detect clusters more massive than � 2 � 1014M�,
nearly independent of their redshift. Combined, this low
mass threshold and its redshift independence produce a
cluster sample which extends, depending on cosmology, to
redshifts z � 3. The proposed survey will cover 12 deg2

in a year; it will be carried out using ten 2.5 m telescopes
and an 8 GHz bandwidth digital correlator operating at
cm wavelengths (Mohr et al. 1999). The detection limit
as a function of redshift and cosmologyMmin(z;
m; h) for
this survey has been studied using mock observations of

simulated galaxy clusters (Holder et al. 2000), and we
draw on those results here.
Optical and near infrared followup observations will be

required to determine the redshifts of SZE clusters. Given
the relatively small solid angle of the survey, it will be
straightforward to obtain deep, multiband imaging. We
expect that the spectroscopic followup will require access
to a multiobject spectrograph on a 10 m class telescope.
The ongoing development of infrared spectrographs may
greatly enhance our ability to e�ectively estimate redshifts
for the most distant clusters detected in the SZE survey.

2.2. A Deep, Wide-area X{ray Survey

We also consider the cosmological sensitivity of a wide
area, deep X-ray imaging survey. The characteristics of
our survey are drawn from a mission under considera-
tion for the NASA \Small Explorers" program. The sur-
vey depth is 3:6 � 106 cm2s at 1.5 keV, and the cover-
age is 104 deg2 (approximately half the available unob-
scured sky). We assume that the imaging characteristics
of the survey are su�cient to allow separation of the 10%
clusters from the 90% AGNs and galactic stars. We fo-
cus on clusters which produce 500 detected source counts
in the 0.5:6.0 keV band, su�cient to reliably estimate
the emission weighted mean temperature in a survey of
this depth (the external and internal backgrounds sum to
� 1:4 cts/arcmin2).
To compute the number of photons detected from a

cluster of a particular ux, we assume the clusters emit
Raymond{Smith spectra (Raymond & Smith 1977) with
1
3 solar abundance, and we model the e�ects of Galac-
tic absorption using a constant column density of NH =
4�1020 cm�2. We assume that the detectors have a quan-
tum e�ciency similar to the ACIS detectors (Bautz et al.
1998, Chartas et al. 1998) on the Chandra X-ray Ob-
servatory, and the energy dependence of the mirror e�ec-
tive area mimics that of the mirror modules on ABRIXAS
(Friedrich et al. 1998).
The X-ray survey could be combined with the Sloan Dig-

ital Sky Survey (SDSS) to obtain redshifts for the clusters
{ the redshift distribution of the clusters which produce
500 photons in the survey described above is well matched
to the SDSS photometric redshift limit.

2.3. Determining the Survey Limiting Mass Mmin

For our analysis, the most important aspect of both sur-
veys is the limiting mass Mmin(z;
m; w; h), as a function
of redshift and cosmological parameters. More speci�cally,
we seek the relation between the detection limit of the
survey, and the corresponding virial mass in the Press{
Schechter formalism.
In the X-ray survey, Mmin follows from the cluster X-

ray luminosity { virial mass relation and the details of the
survey. We adopt the relation between virial mass and
temperature promoted by Bryan & Norman (1998),

M = a
T 3=2

E(z)
p
�c(z)

; (1)

where H(z) = H0E(z) is the Hubble parameter, a is a
normalization determined from the hydrodynamical sim-
ulations and �c is the enclosed overdensity (relative to
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the critical density) which de�nes the cluster virial re-
gion. The normalization a is found to be relatively insen-
sitive to cosmological parameters, and the redshift evo-
lution of Equation 1 appears to be consistent with the
hydrodynamical simulations in those models where it has
been tested (Bryan & Norman 1998). Here we assume
that Equation 1 holds in all cosmologies with the same
value of a, and use the �tting formulae for �c provided
by WS98, which includes the case w 6= �1. We then uti-
lize Equation 1, together with the relation between bolo-
metric luminosity and temperature found by Arnaud &
Evrard (1999), to �nd the limiting mass of a cluster that
produces 500 photons in the 0.5:6.0 keV band in a sur-
vey exposure. For these calculations we assume that the
luminosity-temperature relation does not evolve with red-
shift, consistent with the currently available observations
(Mushotzky & Scharf 1997).

Fig. 1.| Limiting cluster virial masses for detection in the X{
ray survey (upper pair of curves) and in the SZE survey (lower pair
of curves). The solid curves show the mass limit in our �ducial
at �CDM model, with w = �1, 
m = 0:3, and h = 0:66, and
the dotted curves show the masses in the same model except with
w = �0:5.
For an interferometric SZE survey, the relevant observ-

able is the cluster visibility V , which is the Fourier trans-
form pair of the cluster SZE brightness distribution on the
sky as seen by the interferometer. The visibility is propor-
tional to the total SZE ux decrement S� ,

V / S�(M; z) / fICM
M hTein

d2
A

(2)

where hTein is the electron density weighted mean tem-
perature, M is the virial mass, fICM is the intracluster
mediummass fraction and dA is the angular diameter dis-
tance. We normalize this relation using mock observa-
tions of numerical cluster simulations (e.g., Mohr & Evrard
1997,Mohr, Mathiesen & Evrard 1999) carried out in three
di�erent cosmological models, including noise characteris-
tics appropriate to the proposed SZE array (see Holder et
al. 2000 for more details). The ICM mass fraction is set
to fICM = 0:2 in all three cosmological models.
Note that for a ux limited survey, the limiting mass

in equation 2 is sensitive to cosmology through its depen-

dence on dA and the virial massM . In the Press{Schechter
formalism (see below), the virial mass corresponds to a re-
gion of enclosed overdensity with respect to critical density
of �c = 178 in standard CDM, but it is lower and redshift{
dependent in other cosmologies. We adopt the simulation
normalized value of M�

min(z) in our �ducial cosmology as
a template, and then we rescale this relation to determine
Mmin(z) in the model of interest using the relation

Mmin(z) =M
�
min

(z)
h�

h

�
dA(z)

d�
A
(z)

�6=5 �
��
c
(z)

�c(z)

�1=2
(3)

Here the superscript � refers to quantities in the �CDM
reference cosmology, and we have used the scaling of virial

mass with temperature (Eqn. 1): M / hTei
3=2
n

, and the
last factor accounts for the cosmological dependence of the
virial mass. We have tested this scaling by comparing it
to mock observations in simulations of two di�erent cos-
mologies (open CDM and standard CDM), and found that
agreement was better than � 10% in the redshift range
0 < z < 3.
The mass limits we derived for both surveys are shown

in the redshift range 0 < z < 3 in Figure 1, both for
�CDM and for a w = �0:5 universe. The SZE mass limit
is nearly independent of redshift, and changes little with
cosmology. As a result, the cluster sample can extend to
z � 3. In comparison, the X{ray mass limit is a stronger
function of w, and it rises rapidly with redshift. For the X-
ray survey considered here the number of detected clusters
beyond z � 1 is negligible.
These mass limits admittedly incorporate some simpli-

fying assumptions that have not been tested in detail. Our
goal was to capture the scaling with cosmological parame-
ters and redshift as best as possible. However, we empha-
size that further studies of the sensitivities of these scalings
to, for example, energy injection during galaxy formation
will be critical to interpreting the survey data. In the case
of the X{ray survey, the cluster sample will have measured
temperatures, allowing the limiting mass to be estimated
directly from data. In the case of the SZE survey, deep X-
ray followup or multifrequency SZE followup observations
should yield direct measurements of the limiting mass.

3. ESTIMATING CLUSTER ABUNDANCE

We assume that the comoving number density
(dn=dM )dM of clusters at redshift z with massM�dM=2
is given by the Press{Schechter formula (Press & Schechter
1974),

dn

dM
(z;M ) =

r
2

�

�0

M

�c

Dz�
2
M

d�M

dM
exp

�
�

�2
c

2D2
z�

2
M

�
; (4)

where �M is the r.m.s. density uctuation, computed on
mass{scaleM from the present{day linear power spectrum
(Eisenstein & Hu 1998), Dz is the linear growth func-
tion, �0 is the present{day mass density, and �c � 1:68 is
the linear threshold overdensity for collapse. The Press{
Schechter formalism has been shown to be in reasonably
good agreement with results from N{body simulations
(Lacey & Cole 1994, Gross et al 1998, Lee & Shandarin
1999). The directly observable quantity, i.e. the aver-
age number of clusters with mass above Mmin at redshift
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z� dz=2 observed in a solid angle d
 is then simply given
by

dN

dzd

(z) =

"
dV

dzd

(z)

Z
1

Mmin(z)

dM
dn

dM

#
(5)

where dV=dzd
 is the cosmological volume element, and
Mmin(z) is the limiting mass as discussed in section 2.3.
Equations 4 and 5 depend on the cosmological param-
eters through �0, Dz , and dV=dzd
, in addition to the
mild dependence of �M on these parameters through the
power spectrum (although the dependence on the power{
spectrum is more pronounced in the X{ray survey, where
the limiting mass varies strongly with redshift). Note that
the comoving abundance dn=dM is exponentially sensitive
to the growth function Dz . We use convenient expres-
sions for dV=dzd
 andDz in open and at 
� cosmologies
available in the literature (Peebles 1980, Carroll, Press &
Turner 1992, Eisenstein 1996). In the case of cosmologies
with w 6= �1, we have evaluated dV=dzd
 numerically,
but used the �tting formulae for Dz obtained by WS98,
which are valid for constant or slowly{changing w's. It
is generally found that �c does not vary signi�cantly with
cosmology (e.g., Lacey & Cole 1993); here we simply as-
sume �c = 1:68 in all cosmologies, which gives an agree-
ment with simulations to within a factor of � 2 (although
small modi�cations to �c can give even better agreement,
see Lacey & Cole 1994, Bond & Myers 1996).

3.1. Normalizing to Local Cluster Abundance

To compute dN=dzd
 from equation 5, we must choose
a normalization �8 for the density uctuations on cluster
scales, where �8 is the present epoch, linearly extrapo-
lated rms variation in the density �eld �ltered on scales of
8h�1 Mpc. To be consistent in our analysis, we choose the
normalization for each cosmology by �xing the local clus-
ter abundance above a given mass Mnm = 1014h�1 M�.
In all models considered, we set the local abundance to
be 1:5 � 10�5 (h=0:66)3 Mpc�3, the value derived in our
�ducial �CDM model (see below). We have chosen to
normalize using the local cluster abundance (upto a fac-
tor h3) above mass Mnm rather than above a particular
emission weighted mean temperature kTnm, because this
removes the somewhat uncertain cosmological sensitivity
of the virial mass temperature (M �Tx) relation from the
normalization process; spherical tophat calculations sug-
gest a signi�cant o�set in the M � Tx normalization of
the open and at 
m = 0:3 models which hydrodynami-
cal simulations do not seem to reproduce (Evrard, Metzler
& Navarro 1996, Bryan & Norman 1998, Viana & Liddle
1999).
Our normalization approach is sensible, because the

number density of nearby clusters can be measured to
within a factor of h3, and the masses of nearby clusters can
be measured directly through several independent means;
these include the assumption of hydrostatic equilibrium
and using X-ray images and intracluster medium (ICM)
temperature pro�les, weak lensing, or galaxy dynamical
mass estimates. The only cosmological sensitivity of these
mass estimators is their dependence on the Hubble param-
eter h; we include this h dependence when normalizing
our cosmological models. Note that previous derivations
of �8 (e.g. Viana & Liddle 1993; Pen 1998) in various cos-
mologies from the local cluster abundance N (> kT ) above

a threshold temperature kTmin � 7keV found a scaling

�8

1=2
m � 0:5. Since our normalization is based on mass,

rather than temperature, in general, we �nd a di�erent
scaling (if a � 5 times smaller threshold temperature is
used, the constrained combination is already quite di�er-
ent, �8
m �constant).

3.2. Fiducial Cosmological Model

The parameters we chose for of our �ducial cosmological
model are (
�;
m; h; �8; n) = (0:7; 0:3; 0:66; 1; 1). This
at �CDM model is motivated as a \best{�t" model that
produces a local cluster abundance consistent with obser-
vations (Viana & Liddle 1999), and satis�es the current
constraints from CMB anisotropy, high{z SNe, and other
observations (Bahcall et al. 1999). We have assumed a
baryon density of 
bh

2 = 0:0193, consistent with recent
D/H measurements (e.g. Burles & Tytler 1998). Note
that the power spectrum index n is not important for the
analysis presented here, because we normalize on cluster
scales �8, and we �nd that this minimizes the e�ect of
varying n on the density uctuations relevant to cluster
formation.

4. EFFECT OF EQUATION OF STATE ON CLUSTER
ABUNDANCE EVOLUTION

In this section, we describe how variations of the individ-
ual parameters 
, h, and w a�ect the cluster abundance
and redshift distribution. This will be useful in under-
standing the results of the next section, when a full grid
of di�erent cosmologies is considered. In addition, we de-
scribe our method of quantifying the statistical signi�cance
of di�erences between the distributions dN=dz in a pair of
di�erent cosmologies.

Fig. 2.| E�ect of changing w when all other parameters are
held �xed. The four panels show (clockwise from upper left) the
surface density of clusters at redshift z; the linear growth function;
the volume element in units of Mpc3 sr�1 redshift�1; and the co-
moving cluster abundance. The solid curve shows our �ducial at
�CDM model, with w = �1, 
m = 0:3, and h = 0:66. The dotted
curve is the same model with w = �0:6, the short{dashed curve
with w = �0:2, and the long{dashed curve is an open CDM model
with 
m = 0:3.
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4.1. Single Parameter Variations

The surface density of clusters more massive than Mmin

depends on the assumed cosmology mainly through the
growth function D(z) and volume element dV=dzd
. In
the approach described in section 3, once a cosmology is
speci�ed, the normalization of the power spectrum �8 is
found by keeping the abundance of clusters at z = 0 con-
stant. We therefore consider only three \free" parameters,
w, h, 
m, specifying the cosmology. We assume the uni-
verse to be either at (
Q = 1�
m), or open with 
Q = 0.

Fig. 3.| E�ect of changing
m when all other parameters are held
�xed. The �CDM model of Figure 2 is shown (solid curve) together
with models with 
 = 0:27 (dotted curve); 
 = 0:33 (short{dashed
curve); and OCDM models with 
 = 0:27;0:30;0:33 (long{dashed
curves, top to bottom).

Changing w. The e�ects of changing w are demon-
strated in Figure 2. The top left panel shows the total
number of clusters in a 12 square degree �eld, detectable
down to the constant SZE decrement Smin . As discussed
in section 2.3 above, a constant Smin implies a redshift
and cosmology{dependent limitingmassMmin ; in general,
we �nd that including this e�ect somewhat reduces our
sensitivity to w (see Figure 5 and discussion below). Fig-
ure 2 shows models with (
m = 0:3; h = 0:66) and with
three di�erent w's: w = �1 (solid curve), w = �0:6 (dot-
ted curve), and w = �0:2 (short{dashed curve). In addi-
tion, we show the result from an open CDM model with
(
 = 0:3; h = 0:66, long{dashed curve). This panel reveals
that increasing w from w = �1 causes the slope of the
redshift distribution above z � 0:5 to atten, increasing
the number of high{z clusters. Furthermore, \opening"
the universe has an e�ect similar to increasing w. The
other three panels demonstrate the reason for these scal-
ings. The top right panel shows that the growth function
is atter in higher w models, signi�cantly increasing the
comoving number density of high{redshift clusters (bot-
tom left panel). The volume element has the opposite
behavior (bottom right panel), and it tends to balance the
increase in the comoving abundance caused by the growth
function in the range 0 < z �< 0:5; but for higher redshifts,
the growth function \wins". An important conclusion seen
from Figure 2 is that both the total number of clusters as

well as the shape of their redshift distribution, signi�cantly
depends on w.

Changing 
m. The e�ects of changing 
m are shown
in Figure 3. The curves correspond to a at �CDM uni-
verse with (h = 0:66; w = �1), and 
m = 0:27 (dotted),

m = 0:30 (solid), and 
m = 0:33 (short{dashed). In ad-
dition, the long{dashed curves show the same three models
(top to bottom), assuming open CDM with 
� = 0. Sev-
eral conclusions can be drawn from these plots. Overall,
the top left panel shows that a decrease in 
m increases
the number of clusters (and vice versa) at all redshifts.
Note that the dependence is strong, for instance, a 10%
decrease in 
m increases the total number of clusters by
� 25% in either �CDM or OCDM cosmologies. As em-
phasized by Bahcall & Fan (1998), Viana & Liddle (1999)
and others, this makes it possible to estimate an upper
limit on 
m using current data on cluster abundances (i.e.
a few high{z clusters). A second important feature seen in
the top left panel is that the shape of the redshift distri-
bution is not changed signi�cantly, a conclusion that holds
both in �CDM and OCDM. Finally, the remaining three
panels reveal that the e�ects of 
m arise mainly from the
changes in the comoving abundance (bottom left panel).
In at �CDM, 
m has relatively little e�ect on the vol-
ume or the growth function, and the comoving abundance
is determined by the value of �8 that keeps the the lo-
cal abundance constant at z = 0 (we �nd �8=0.93 for

m = 0:33 and �8 = 1:09 for 
m = 0:27). In addition, we
�nd that the change in the shape of the underlying power
spectrum with 
m enhances this e�ect. Unlike in the case
of w, the volume element and the comoving abundance
now act in the same direction: a lower 
m increases both
the comoving abundance and the volume element. Note
that in OCDM, the growth function has a larger e�ect, and
that relative to �CDM, the redshift distribution is much
atter.

Fig. 4.| E�ect of changing h when all other parameters are held
�xed. The �CDM model of Figure 2 is shown (solid curve) together
with models with h = 0:5 (dotted curve); h = 0:82 (short{dashed
curve); and OCDM models with h = 0:5;0:66;0:82 (long{dashed
curves, top to bottom).



6 QUINTESSENCE AND CLUSTER ABUNDANCE EVOLUTION

Changing h. Figure 4 demonstrates the e�ects of chang-
ing h. Three �CDM models are shown with (
m =
0:30; w = �1), and h = 0:5 (dotted curve), h = 0:66
(solid curve), and h = 0:82 (short{dashed curves). The
long{dashed curves correspond to OCDM models with the
same parameters (top to bottom). Comparing the top
right panel with that of Figure 3, the qualitative behavior
of dN=dz under changes in h and 
m are similar: decreas-
ing h increases the total number of clusters, but does not
considerably change their redshift distribution. However,
the sensitivity to h is signi�cantly less: the total number
of clusters is seen to increase by � 25% only when h is
decreased by the same percentage. Note that the growth
function is not e�ected by h, and the h sensitivity is driven
by our normalizationprocess, which �xes the abundance at
z = 0 (seex 3.1). Since the volume scales as / h�3, we �x
the comoving abundance to be proportional to / h3. As a
result, dN=dzd
 is nearly independent of h (e.g. for a pure
power{law spectrum, there would be no h{dependence).

Fig. 5.| E�ect of changing w (upper panels) or 
m (lower pan-
els) when all other parameters are held �xed, including the mass
limit. The types of the curves correspond to the di�erent models,
as shown in Figs 2 & 3.

E�ects of Mmin. Finally, we examine the extent to
which the above conclusions depend on the cosmology and
redshift{dependence of the limiting mass Mmin . To do
this, we compute cluster abundances above the �xed mass
Mmin = 1014h�1M�, characteristic of the SZE survey de-
tection threshold in the range of cosmologies and redshifts
considered here. The results are shown in Figure 5: the
top panels show the surface density and comoving abun-
dance when w is changed (the cosmological models are the
same as in Figure 2), and the bottom panels show the same
quantities under changes in 
m (the models are the same
as in Figure 3). A comparison between Figures 5 and 2
gives an idea of the e�ects of the mass limit. The general
trend seen in Figure 2 remains true, i.e. increasing w at-
tens the redshift distribution at high{z. However, when
a constant Mmin is assumed, the \pivot point" moves to
slightly higher redshift, and the total number of clusters
becomes less sensitive to w. Similar conclusions can be
drawn from a comparison of Figure 3 with the bottom two

panels of Figure 5: under changes in 
m the general trends
are again similar, but the di�erences between the di�erent
models are ampli�ed when a constant Mmin is used.

Abundances in the X{ray Survey. In Figure 6, we show
the evolution of the cluster abundance, and its sensitiv-
ity to w and 
m, in the X{ray survey. Because of the
much larger solid angle surveyed, the numbers of clusters
is signi�cantly larger than in the SZE case, despite the
higher limiting mass (cf. Fig 1). Nevertheless, the trend
that can be identi�ed in the X{ray sample are similar to
those in the SZE case. Raising w increases the total num-
ber of clusters, and attens their redshift distribution. On
the other hand, raising 
m decreases the total number of
clusters. Note that in comparison to the SZE survey, 
m
has a smaller e�ect on the total number, and a somewhat
larger e�ect on the slope of the redshift distribution { these
are caused by the stronger cosmology{dependence of the
X{ray mass limit.

Fig. 6.| E�ect of changing w (upper panels) or 
m (lower pan-
els) when all other parameters are held �xed in an X{ray survey.
Note the much larger numbers of clusters in comparison to the SZE
survey. In the top panel, the curves correspond to w = �1 (solid),
w = �0:8 (dotted) and w = �0:6 (dashed). In the bottom panel,
the curves correspond to 
m = 0:3 (solid), 
m = 0:27 (dotted) and

m = 0:33 (dashed).

In summary, we conclude that changes in w modify both
the normalization and the shape of the redshift distribu-
tion of clusters, while changes in 
m or h e�ect essentially
only the overall amplitude. This suggests that changes in
w can not be fully degenerate with changes in either 
m
or h (or a combination), making it possible to measure w
from cluster abundances alone. These conclusions hold ei-
ther for clusters above a �xed detection threshold in and
SZE or X-ray survey, or for a sample of clusters above a
�xed mass.

4.2. Comparing dN=dz in Two Di�erent Cosmologies

The main goal of this paper is to quantify the accuracy
to which w can be measured in future SZE and X{ray
surveys. To do this, we must answer the following ques-
tion: given a hypothetical sample of Ntot clusters (with
measured redshifts) obeying the distribution dNA=dz of
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Fig. 7.| Contours of 1, 2, and 3� signi�cance for di�erent models when they are compared to a �ducial at �CDM model with 

m
= 0:3

and h = 0:66, using the SZE survey. The three panels show three di�erent cross{sections of constant total probability at �xed values of h
(0.5,0.66, and 0.82) in the investigated 3{dimensional 


m
; h; w parameter space.

the test model (A) cosmology, what is the probability
Ptot(A;B) that the same sample of clusters is detected
in the �ducial (B) cosmology, with distribution dNB=dz?
We have seen in section 4.1 that the overall amplitude,
and the shape of dN=dz are both important. Motivated
by this, we de�ne

Ptot(A;B) = P0(A;B) � Pz(A;B) (6)

where P0(A;B) is the probability of detecting NA;tot clus-
ters when the mean number is NB;tot, and Pz(A;B) is the
probability of measuring the redshift distribution of model
(A) if the true parent distribution is that of model (B). We
assume P0 is given by the Poisson distribution, and we use
the Kolmogorov{Smirnov (K{S) test to compute Pz(A;B)
(Press et al. 1992). With this approach (as opposed to
the usual �2 tests), we need not bin the data in redshift.
For reference, it is useful to quote here some examples

for the probabilities, taking (
m = 0:3; h = 0:66; w = �1)
as the �ducial (B) model. For example, closest to this
model in Figure 2 is the one with w = �0:6. For this
case, we �nd P0 = 6 � 10�5 and Pz = 3:5 � 10�3 for a
total probability of Ptot = 2:1� 10�7. In other words, the
two cosmologies could be distinguished at a likelihood of
4� using only the total number of clusters, at 2:9� us-
ing only the shape of the redshift distribution, and at
the 5:2� level using both pieces of information. Taking
the 
m = 0:33 �CDM cosmology from Figure 3 as an-
other example for model (A), we �nd P0 = 5:3 � 10�4

(=3:5�), Pz = 4:2� 10�1 (=0:8�), and a total probabil-
ity of Ptot = 2:2 � 10�4 (=3:9�). Not surprisingly, the
shape does not add signi�cantly to the constraint. An ex-
ample where the opposite is true is the 
m = 0:33 open
CDM cosmology in Figure 3, for which we �nd P0 = 0:15
(=1:4�), Pz = 7 � 10�2 (=1:8�), and a total probabil-
ity of Ptot = 0:01 (=2:6�). In this case, the distinction
is made primarily by the di�erent redshift distributions,
rather than the total number of detected clusters.

5. CONSTRAINTS ON THE EQUATION OF STATE

We derive cosmological constraints by considering a 3{
dimensional grid of models in 
m; h, and w. As described
above, we �rst �nd �8 in each model, so that all models are
normalized to produce the same local cluster abundance

at z = 0. We then compute dN=dzd
 in these models for
0:2 � 
m � 0:5, 0:5 � h � 0:9, and �1 � w � �0:2.
The range for w corresponds to that allowed by current
astrophysical constraints (Wang et al. 2000).

5.1. Expectations from the Sunyaev{Zel'dovich Survey

Figure 7 shows contours of 1, 2, and 3� for the total
probability Ptot for models when compared to the �ducial
at �CDM model. The three panels show three di�erent
cross{sections of the investigated 3{dimensional 
m; h; w
parameter space, taken at constant values of h = 0.5, 0.66,
and 0.82, spanning the range of values preferred by other
observations. The most striking feature in this �gure is
the direction of the contours, which turn upwards in the
w;
m plane, and become narrower for larger values of w.
We �nd that the trough of maximum probability for �xed
h = 0:66 is well described by

(
m � 0:3)(w+ 1)�3=2 = 0:1; (7)

with further constant shifts in 
m caused by changing h.
The �3� width enclosed by the contours around this rela-
tion is relatively narrow in 
m (�6%). In a �CDM case,
even when a large range of values is considered for h, the
constraint 0:27 �< 
m �

< 0:35 would follow; when w 6= �1 is
considered, the allowed range widens to 0:27 �< 
m �

< 0:45.
On the other hand, a wide range of w's is seen to be con-
sistent with w = �1: the largest currently allowed value,
w � �0:2 is approximately 3� away from w = �1, and
w = �0:6 is allowed at 1�. Note that h is not well deter-
mined, i.e. the contours look similar for all three values
of h, and 1� models exist for any value of h in the range
0:5 �< h �

< 0:9. This is not surprising, as Figure 4 shows
dN=dzd
 is sensitive to the value of h only through its
e�ect on the determination of �8.

5.2. Expectations from the X{ray Survey

Figure 8 contains expectations for the X-ray survey; we
show contours of 1, 2, and 3� probabilities relative to the
�ducial �CDMmodel. The qualitative features are similar
to that in the SZE case, but owing to the larger number
of clusters, the constraints are signi�cantly stronger: the
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Fig. 8.| Contours of 1, 2, and 3� probabilites for models when they are compared to a �ducial at �CDM model, as in Figure 7, but for
the X{ray survey.

contours are narrower, and do not extend to large values
of w. Most importantly, the largest value of w allowed at
a probability better than 3� is w � �0:8, even assuming
that the values of 
m and h are not known. Although
the contours are narrower than in the SZE case, assuming
that h and w are unknown, the allowed range of 
m is
similar to that in the SZE case, 0:26 �< 
m �

< 0:39. Note
that a knowledge of h would not signi�cantly improve this
constraint (although if h is found to be low, then the lower
limit in 
m would increase). Finally, assuming that both h
and 
m are known to high accuracy, the allowed 3� range
on w would reduce to �1 � w �

< � 0:95.

6. RESULTS AND DISCUSSION

6.1. Total Number vs. the Redshift Distribution

Our main results are presented in Figures 7 and 8, which
show the probabilities of various models relative to a �du-
cial �CDM model. As demonstrated by these �gures, the
SZE survey determines only a combination of 
m and w;
in the absence of external constraints on 
m, w as large as
�0:2 is only inconsistent with w = �1 at 3�. On the other
hand, the X{ray survey could distinguish a w � �0:8 or a
w � �0:95 model from �CDM at 3� signi�cance, depend-
ing on whether 
m is known to high accuracy from other
studies.
It is interesting to ask whether these constraints arise

mainly from the total number of detected clusters, or from
their redshift distribution. To address this issue, in Fig-
ure 9 we show separate probability contours for the proba-
bility P0 (total number of clusters, left panels), and for the
probability Pz (shape of redshift distribution, right pan-
els). In the SZE case, the P0 and Pz contours unfavorably
run along nearly identical directions. At w �

< � 0:5, the
shape information plays almost no role (the contours of
Ptot and P0 are indistinguishable), but at w �

> � 0:5, the
shape becomes increasingly important. At the largest val-
ues of w �

> � 0:3, the shape is a better discriminator for
w than the total number of clusters. Note that the di�er-
ence in shapes arises mostly from the high{redshift (z �> 1)
clusters (cf. Fig. 2). As shown by the increased width of
the contours in the bottom panels, 
m has a relatively
small e�ect on the shape of the redshift distribution.
In the X{ray case (bottom panels in Fig. 9), the situ-

ation is di�erent, because the contours of P0 and Pz are
both much narrower, and not nearly so parallel. As a re-
sult, the contours for the total probability do not reach
beyond w � �0:8. Note that the redshift distribution (of
clusters primarily in the 0 < z < 1 range) here plays a cru-
cial role. As Figures 4 and 3 show, the total number of
clusters can be adjusted by changing 
m and h. In terms
of the total number of clusters, w is therefore degenerate
both with 
m and h: raising w lowers the total number,
but this can always be o�set by a change in 
m and/or
h. The rightmost panel in the middle row of Fig. 8 re-
veals that based on P0 alone, w = �0:5 (and 
m = 0:4)
can not be distinguished from �CDM even at the 1� level.
On the other hand, when the shape information is added,
w �
< � 0:8 follows to 3� signi�cance.

6.2. Caveats and Suggestions for Further Work

Our conclusions above are dependent on the chosen lim-
iting mass, which is a function of both redshift and cos-
mology. We have attempted to include these dependen-
cies, so that the whole cluster sample, down to the de-
tection threshold is utilized. We have experimented with
dN=dz distributions obtained when a constant mass limit
is used at all redshifts and in all cosmologies. In gen-
eral, we �nd that the shape of the redshift{distribution
is then a stronger function of w (cf. Fig. 2 and the top
panels of Fig. 5). In principle, measured cluster velocity
dispersions and X{ray temperatures (both cosmology in-
dependent) could be utilized to improve constraints on w,
i.e. by using sub{samples that maximize the di�erences
between models. Further work is needed to clarify the fea-
sibility of this approach, as well as to con�rm the expected
dependence of Mmin on 
m, h, w, and z.
Further work is required to test the cluster structural

evolution models we used. For the X{ray survey, we
have assumed that the cluster luminosity{temperature re-
lation does not evolve, consistent with current observa-
tions (Mushotzky & Scharf 1997), and in the SZE survey,
we have adopted the structural evolution found in state of
the art hydrodynamical simulations (Holder et al. 2000).
Because of the sensitivity of the survey yields to the lim-
iting mass, cluster structural evolution which changes the
observability of high redshift clusters can introduce sys-
tematic errors in cosmological constraints: for example,
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both low 
m cosmologies and positive evolution of the
cluster luminosity{temperature relation increase the clus-
ter yield in an X-ray survey. SZE surveys are generally
less sensitive to evolution than X{ray surveys, because the
X{ray luminosity is heavily dependent on the core struc-
ture (e.g., the presence or absence of cooling instabilities),
whereas the SZE visibility depends on the integral of the
ICM pressure over the entire cluster (Eqn. 2). We are
testing these assertions with a new suite of hydrodynam-
ical simulations, in scenarios where galaxy formation at
high redshift preheats the intergalactic gas before it col-
lapses to form clusters (Evrard et al. in prep). Finally,
we emphasize that because of the sensitivity of X{ray sur-
veys to evolution, we have only used those clusters which
produce enough photons to measure an emission weighted
mean temperature. Using the measured temperatures, it
should be possible to disentangle the cosmological e�ects
from those caused by the evolution of cluster structure.

Fig. 9.| Probability contours of 1, 2, and 3� probabilites as in
Figures 7 and 8, but when only the total number of clusters (left
panels), or only the redshift distributions (right panels) are used to
compute the likelihoods between two models.

In our treatment, we have relied on the Press{Schechter
formalism. In cosmologies where it has been tested against
simulations, the number density of massive halos has been
shown to agree with simulations to a factor of � 2. It is
critical to carry out comparisons between numerical simu-
lations and Press-Schechter predictions for a wider range
of cosmologies. Although we do not expect the results
presented here to change qualitatively, changes in dN=dM
by upto a factor of � 2 could a�ect the exact shape of
the probability contours shown in Figures 7 and 8. We
have further ignored the e�ects of galaxy formation and
feedback on the limiting mass. In principle, the relation
between the cluster SZE decrement and virial mass in the
lowest mass clusters could be a�ected by these processes.
In addition, the dependence of both the SZE decrement
and the X{ray ux likely exhibits a non{negligible intrinsic
scatter, which could e�ectively lower the limiting masses
in our treatment, especially for the X{ray survey. The
SZE decrement to virial mass relation is found to have a
small scatter in numerical simulations (Metzler 1998), and

to cause a negligible increase in the total cluster yields
(Holder et al. 1999).
Perhaps the most critical assumption is that the the lo-

cal cluster abundance is known to high accuracy. We have
used this assumption to determine �8, i.e. to eliminate
one free parameter { e�ectively assigning \in�nite weight"
to the cluster abundance near z = 0. This approach is ap-
propriate for several reasons. The cosmological parameters
make little di�erence to the cluster abundance at z � 0,
other than the volume being proportional to h�3. Sim-
ilarly, the study of local cluster masses is cosmologically
independent (upto a factor of h). In a 104 square degree
survey, we �nd that the total number of clusters between
0 < z < 0:1, down to a limiting mass of 2 � 1014h�1 M�

is � 4000; with a random error of only �
< 2%. We have

experimented with our models, assuming that the normal-
ization at z = 0 can be increased/decreased by 2%, and
found that a change at this level makes little di�erence to
the probabilities between a pair of models.
It is nevertheless interesting to consider a di�erent ap-

proach, where �8 is treated as another free parameter in
addition to 
m; h; and w. As an example, we consider
models with �xed 
m = 0:3 and h = 0:66, and allow
w to vary. At each w, we then determine the value of
�8 that maximizes the total probability, (i.e. most sim-
ilar to the �ducial model). We then �nd that models
with (w; �8) = (�0:6; 0:955), (w; �8) = (�0:4; 0:905), and
(w; �8) = (�0:2; 0:860) di�er from our �ducial (w; �8) =
(�1;�1) model at signi�cances of 1�, 2:5�, and 4:2�, re-
spectively. These examples reveal that a mild degeneracy
exists between w and �8 that might allow somewhat larger
values of w than obtained by �xing �8 based on the local
abundance. Note that in these models, the local abun-
dance would, in fact, di�er from that in the �ducial model
by � 10%, violating the local abundance constraint.
In section 5, we restricted our range of models to �CDM.

We �nd that the redshift distribution of clusters in open
CDM models typically resembles that in models with high
w. This is demonstrated in Figure 2: both in the w = �0:2
and the OCDM model, the redshift distributions are at-
ter and extend to higher z than in �CDM. We �nd that
OCDM models with suitably adjusted values of 
m and
h are typically di�cult to distinguish from those with
w �
> � 0:5, but the at shape of dN=dzd
 makes OCDM

easily distinguishable from �CDM. A broader study of
di�erent cosmological models, including those with both
quintessence and curvature, time{dependent w, and those
with non{Gaussian initial conditions could reveal new de-
generacies, and will be studied elsewhere.

6.3. Clusters versus CMB Anisotropy and High-z SNe

A useful generic feature of the probability contours pre-
sented here is their di�erence from those expected in CMB
anisotropy or Supernovae data. Two di�erent cosmolo-
gies produce the same location (spherical harmonic index
`peak) for the �rst Doppler peak for the CMB tempera-
ture anisotropy, provided they have the same comoving
distance to the surface of last scattering (cf. Wang &
Steinhardt 1998, White 1998, Huey et al. 1999). Note
that this is only the most prominent constraint that can
be obtained from the CMB data, with considerable more
information once the location and height of the second and
higher Doppler peaks are measured. Similarly; the appar-
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ent magnitudes of the observed SNe constrain the luminos-
ity distance dL(z) to 0 � z �< 1 (Schmidt et al. 1998, Perl-
mutter et al. 1999). In general, both of these types of
observations will determine a combination of cosmological
parameters that is di�erent from the cluster constraints
derived here.
In Figure 10, we zoom in on the relevant region of the


m � w plane in the X{ray survey, and compare the clus-
ter constraints to those expected from CMB anisotropy
or high{z SNe. The three dashed curves correspond to
the CMB constraints: the middle curve shows a combina-
tion of 
m and w that produces the constant `peak � 243
obtained in our �ducial �CDM model (using the �tting
formulae from White 1998 for the physical scale kpeak);
the other two dotted curves bracket a �1% range around
this value. Similarly, the dotted curves correspond to the
constraints from SNe. The middle curve shows a line of
constant dL at z = 1 that agrees with the �CDM model;
the two other curves produce a dL that di�ers from the
�ducial value by �1%. As the �gures show, the lines of
CMB and SNe parameter degeneracies run nearly paral-
lel to each other; however, both of those degeneracies are
nearly orthogonal to the direction of the parameter de-
generacy in cluster abundance studies. In particular, the
maximumallowed value of w, using both the CMB or SNe
data, is w � �0:8; while this is reduced to w � �0:95 when
the cluster constraints are added. Note that in Figure 10,
we have assumed a �xed value of h = 0:66; however, we
�nd that relaxing this assumption does not signi�cantly
change this conclusion. The CMB and SNe constraints
depend more sensitively on h than the cluster constraints
do: as a result, the con�dence regions do not overlap sig-
ni�cantly even in the three{dimensional (w;
m; h) space.

Fig. 10.| Con�dence contours for a �xed h = 0:66 as in Fig-
ure 8, but zooming in for clarity. Also shown are combinations of
w and 
m that keep the spherical harmonic index ` of the �rst
Doppler peak in the CMB anisotropy data constant to within �1%
(dashed lines); and combinations that keep the luminosity distance
to redshift z = 1 constant to the same accuracy.

The orthogonality of the cluster constraint to those from
the other two methods can be understood based on the
discussions in x 4.1. To remain consistent with the CMB
and SNe Ia constraints, an increase in w must be coupled

with a decrease in 
m; however, both increasing w and
lowering 
m raises the number of detected clusters. To
keep the total number of clusters constant, an increase in
w must be balanced by an increase in 
m. Note that this
statement is true both for the SZE and the X{ray sur-
veys. Combining the cluster constraints with the CMB
and SNe Ia constraints will therefore likely result in im-
proved estimates of the cosmological parameters, and we
do not expect this conclusion to rely on the details of the
two surveys considered here.

7. CONCLUSIONS

We studied the expected evolution of galaxy cluster
abundance from 0 �< z �

< 3 in di�erent cosmologies, in-
cluding the e�ects of variations in the cosmic equation of
state parameter w � p=�. By considering a range of cos-
mological models, we quanti�ed the accuracy to which w,
and other cosmological parameters can be determined in
the future, using a 12 deg2 Sunyaev-Zel'dovich E�ect sur-
vey and a deep 104 deg2 X-ray survey. In our analysis, we
have assumed that the local cluster abundance is known
accurately: we �nd that in practice, an accuracy of � 5%
is su�cient for our results to be valid.
We �nd that raisingw signi�cantly attens the redshift{

distribution, which can not be mimicked by variations in
either 
m, h, which a�ect essentially only the normaliza-
tion of the redshift distribution. As a result, both surveys
will be able to improve present constraints on w. In the

m�w plane, both the SZE and X{ray surveys yield con-
straints that are nearly orthogonal to those obtained from
the CMB anisotropy and high{z SNe. In combination with
these data, the SZE survey can determine both w and 
m
to an accuracy of � 10% at 3� signi�cance. Further im-
provements will be possible from the X{ray survey. The
large number of clusters further alleviates the degeneracy
between w and both 
m and h, and, as a result, the X{
ray sample can determine w to � 10% and 
m to � 1%
accuracy without relying on either the CMB or SN data,
and to an accuracy of a few percent in combination.
Further work is needed to clarify the systematic uncer-

tainties in our treatment, arising from the use of the Press{
Schechter formalism, the analytic estimates of the scaling
of the mass limits with cosmology, and our neglect of issues
such as galaxy formation in the lowest mass clusters, or the
accuracy to which the local abundance can be determined.
However, our �ndings suggest that, in a at universe, the
cluster data lead to tight constraints on a combination
of 
m and w, especially valuable because of its comple-
mentarity to those obtained from the CMB anisotropy or
Hubble diagrams using SNe as standard candles.
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